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Abstract: To address the limitations of existing LiDAR–visual fusion methods in adequately
accounting for map uncertainties induced by LiDAR measurement noise, this paper intro-
duces a LiDAR–inertial–visual odometry framework leveraging mergeable probabilistic
voxel mapping. The method innovatively employs probabilistic voxel models to character-
ize uncertainties in environmental geometric plane features and optimizes computational
efficiency through a voxel merging strategy. Additionally, it integrates color information
from cameras to further enhance localization accuracy. Specifically, in the LiDAR–inertial
odometry (LIO) subsystem, a probabilistic voxel plane model is constructed for LiDAR
point clouds to explicitly represent measurement noise uncertainty, thereby improving
the accuracy and robustness of point cloud registration. A voxel merging strategy based
on the union-find algorithm is introduced to merge coplanar voxel planes, reducing com-
putational load. In the visual–inertial odometry (VIO) subsystem, image tracking points
are generated through a global map projection, and outlier points are eliminated using
a random sample consensus algorithm based on a dynamic Bayesian network. Finally,
state estimation accuracy is enhanced by jointly optimizing frame-to-frame reprojection
errors and frame-to-map RGB color errors. Experimental results demonstrate that the
proposed method achieves root mean square errors (RMSEs) of absolute trajectory error
at 0.478 m and 0.185 m on the M2DGR and NTU-VIRAL datasets, respectively, while
attaining real-time performance with an average processing time of 39.19 ms per-frame on
the NTU-VIRAL datasets. Compared to state-of-the-art approaches, our method exhibits
significant improvements in both accuracy and computational efficiency.

Keywords: LiDAR–inertial–visual odometry; voxel map; multi-sensor fusion; SLAM

1. Introduction
Simultaneous localization and mapping (SLAM), as the foundational capability for en-

vironmental perception in intelligent unmanned systems, directly determines the decision-
making competence of autonomous vehicles [1,2], mobile robots [3], and unmanned aerial
vehicles [4] in complex scenarios through its localization accuracy and robustness. Cur-
rent SLAM methodologies are categorized into two paradigms based on sensor modalities:
visual SLAM [5–14], which establishes feature associations using visual sensors, and LiDAR-
based SLAM [15–22], which leverages the geometric features of LiDAR point clouds.

Visual SLAM captures environmental data through camera sensors, extracting rich
features such as textures and colors, which enables superior performance in feature-rich
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environments. However, its mapping process relies on computationally intensive trian-
gulation of multi-view image disparities to derive depth information at the pixel level.
Additionally, depth estimation is affected by camera calibration errors and the baseline
between multi-view images, which can lead to inaccuracies in depth estimation [23]. Fur-
thermore, visual SLAM exhibits high sensitivity to illumination variations, with significant
performance degradation under low-light conditions or in environments with strong spec-
ular reflections [24]. In contrast, LiDAR-based SLAM leverages laser scanners to provide
high-precision depth measurements, ensuring stable operation across diverse lighting
conditions and broader environmental applicability. Nevertheless, the inherent sparsity
of LiDAR point clouds limits its capacity to discern textural details, particularly in geo-
metrically impoverished environments such as tunnels and highways, where localization
accuracy deteriorates markedly, and failure rates increase substantially [25].

To overcome the limitations of single-sensor systems in perception accuracy and
environmental adaptability, recent research has proposed multi-sensor fusion strate-
gies [26–34], aiming to achieve collaborative perception between visual systems and LiDAR
through complementary advantages. Leveraging LiDAR’s high-precision ranging and
high-resolution 3D perception capabilities, it often serves as the primary source of prior
environmental information in multi-sensor fusion localization systems. The point cloud
maps constructed by tightly integrating LiDAR and inertial measurement unit (IMU) data
not only provide initial pose estimation constraints for visual SLAM modules but also
establish the spatial reference framework for global maps.

However, existing LiDAR–visual fusion methods typically treat LiDAR point clouds
as deterministic data during map construction and employ the iterative closest point (ICP)
algorithm [35] to register LiDAR points to predefined deterministic planes. This approach
neglects the inherent noise characteristics in LiDAR measurements, potentially leading
to reduced global map accuracy and, consequently, affecting the positioning precision of
the entire fusion system. Therefore, LiDAR point clouds should be regarded as uncertain
planes with probabilistic distributions rather than strict deterministic planes. Furthermore,
current methodologies primarily confine the utilization of visual features to geometric
constraints, failing to fully exploit the latent advantages embedded in RGB information.

In response to the aforementioned challenges, this paper proposes a LiDAR–inertial–
visual odometry system based on mergeable probabilistic voxel mapping, with the follow-
ing key contributions:

1. We propose a novel LiDAR–inertial–visual odometry (LIVO) framework that effi-
ciently captures environmental geometric planar features and color information while
simultaneously enhancing localization accuracy and maintaining real-time computa-
tional performance.

2. A point cloud processing method based on mergeable probabilistic voxel mapping is
employed to probabilistically model the noise in the point clouds. By constructing
voxel plane models through probabilistic modeling to estimate the system state, more
accurate point cloud registration is achieved. Meanwhile, a hash table and union-find
are used to merge voxel planes with coplanar relationships, effectively reducing the
computational load.

3. In the visual–inertial subsystem (VIO), an accurate visual tracking and optimization
scheme is designed. Tracking points are obtained through a global map projection,
and outlier tracking points are removed using a random sample consensus algorithm
based on a dynamic Bayesian network [36]. A joint optimization is then performed
using frame-to-frame reprojection error and frame-to-map RGB color error, further
improving system accuracy and robustness.
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2. Related Work
This section will review previous research closely related to the proposed system,

including LiDAR SLAM, visual SLAM, and LiDAR–visual SLAM.

2.1. Visual SLAM

Traditional visual SLAM methodologies can be categorized into feature-based methods
and direct methods [37]. Feature-based visual SLAM estimates camera motion through the
extraction and matching of visual features. For instance, MonoSLAM [5], as the pioneering
monocular visual SLAM system, employs an extended Kalman filter (EKF) for system
state estimation and utilizes Shi–Tomasi corner features for image tracking, achieving
real-time recovery of 3D camera trajectories. PTAM [6] introduced a keyframe-based
approach that selects representative frames for camera state estimation, thereby enabling
computationally intensive yet more accurate bundle adjustment (BA) optimization. This
framework innovatively decouples the pipeline into parallel tracking and mapping threads,
establishing a paradigm shift in SLAM architecture design.

Building on this, ORB-SLAM2 [8] implements ORB feature points for data association
and extends the multi-threaded paradigm through a tripartite architecture: tracking, local
mapping, and loop closing. ORB-SLAM3 [9] introduces a tightly coupled visual–inertial
SLAM framework based on nonlinear optimization, which jointly refines camera and
IMU measurements within a sliding window to significantly enhance pose estimation
accuracy. While integrating functionalities for monocular, stereo, and RGB-D cameras
across visual, visual–inertial, and multi-map SLAM modules, its architectural complexity
introduces substantial computational overhead. MSCKF [10] is a tightly coupled visual–
inertial system based on EKF, which uses IMU for state prediction. It incorporates the IMU
velocity, IMU measurement bias, and the multi-time camera poses in the sliding window
into the state vector to perform 6-DOF motion estimation for visual–inertial odometry.
VINS-Mono [11] strategically combines front-end optical flow tracking with back-end
sliding window nonlinear optimization, achieving an operational equilibrium between
real-time performance and localization precision.

In contrast to feature-based methods, direct methods bypass explicit feature extraction
by minimizing photometric errors between consecutive frames to directly estimate camera
states, thereby reducing computational complexity while enabling efficient tracking [37].
For instance, DTAM [12] estimates camera poses through alignment of entire images
with dense depth maps, though its requirement for dense depth reconstruction from
monocular inputs incurs significant computational demands. SVO [13], as a semi-direct
visual odometry framework, acquires camera poses via direct matching of FAST corner
patches within images, avoiding the exhaustive full image matching employed by pure
direct methods. LSD-SLAM [14] presents a large-scale direct monocular SLAM approach
that tracks camera motion through directly minimizing photometric errors and corrects
accumulated errors through graph optimization. However, its effectiveness relies heavily
on stringent photometric invariance assumptions that limit practical applicability.

Compared to feature-based methods, direct methods frequently demonstrate superior
short-term tracking accuracy in low-texture environments [37], primarily due to their
capacity to fully exploit pixel-level image information rather than relying exclusively on
sparse salient feature points. Furthermore, by circumventing explicit feature extraction
stages, direct methods inherently achieve superior computational efficiency. Capitalizing
on these merits, our framework strategically implements direct methods within the VIO
subsystem for tracking and matching, which helps to improve the overall robustness and
localization precision.
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2.2. LiDAR SLAM

LiDAR SLAM achieves pose estimation between consecutive frames through scan-
matching algorithms. LOAM [15], as a classic LiDAR odometry method, implements
localization based on KD-Tree [38] scan matching of edge and plane feature points. How-
ever, LOAM employs a loosely coupled architecture that omits the integration of IMU
and LiDAR measurements in joint optimization. In contrast, LIO-SAM [16] implements a
tightly coupled smoothing and mapping framework, fusing IMU pre-integration, LiDAR
odometry, loop closure factors, and GPS measurements within a unified factor graph to
achieve enhanced localization precision. FAST-LIO [17] establishes a tightly coupled fusion
of IMU and LiDAR data through an error-state iterative Kalman filter (ESIKF) and manages
the point cloud map using KD-Tree. It also proposes a new Kalman gain computation
formula, where the computational cost depends on the state dimension rather than the
measurement dimension, significantly reducing the computational load and improving
processing speed.

However, KD-Tree-based methods require retrieving at least three nearest neighbors
for each point-to-plane correspondence to fit the corresponding plane. As the map grows,
the cost of rebuilding the KD-Tree also increases. To improve scan-matching efficiency,
FAST-LIO2 [18] develops an incremental iKD-Tree [39] to effectively organize the point
cloud map. This structure allows for efficient nearest-neighbor searches, further reducing
the computational load while making the map organization more efficient. Building on this,
Faster-LIO [19] proposes a tightly coupled LiDAR odometry method based on incremental
voxel mapping. Compared to iKD-Tree, its map update and nearest-neighbor search speeds
are further enhanced. Voxelmap [20] and Voxelmap++ [21] organize and manage maps
using octrees and union-find structures, respectively. They also perform probabilistic voxel
plane modeling of LiDAR points, eliminating the reliance on time-consuming nearest-
neighbor searches, thus improving computational speed. Voxel-SLAM [22] proposes a
voxel-based tightly coupled LiDAR–inertial SLAM system that unifies environmental
information representation through adaptive voxel maps and utilizes short-term, mid-term,
and long-term multi-scale data association for high-precision localization and mapping.

The LIO subsystem in this paper is primarily based on Voxelmap++ [21], which
explicitly parameterizes the noise in LiDAR point measurements using voxel modeling,
achieving a balance between high precision and real-time performance. However, the
merging of voxel planes introduces cumulative errors and neglects the differences between
voxel planes. To address this, this paper utilizes image information from the VIO subsystem
to further optimize the system state, effectively compensating for the limitations of the
LIO subsystem.

2.3. LiDAR–Visual SLAM

To enhance the accuracy and robustness of SLAM systems, fusing data from LiDAR,
cameras, and IMUs has proven to be an effective strategy. The LIC-Fusion series [26,27]
employs the MSCKF framework [10] to tightly couple LiDAR features, IMU measurements,
and sparse visual feature points, utilizing a sliding window approach for feature tracking.
LVI-SAM [28] leverages a factor graph to tightly couple visual–inertial and LiDAR–inertial
subsystems, incorporating loop closure detection to achieve robust and high-precision
state estimation and mapping. FAST-LIVO [29] integrates FAST-LIO2 [18] and SVO [13],
utilizing a LiDAR–inertial subsystem to generate global point clouds while attaching image
patches to each map point. It optimizes state estimation by minimizing photometric errors
and introduces a novel outlier rejection method to enhance system accuracy and robustness.
Building upon this foundation, FAST-LIVO2 [30] further enhances system performance by
efficiently fusing IMU, LiDAR, and visual data through the ESIKF. It addresses dimensional
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mismatch in heterogeneous data via a sequential update strategy. Additionally, FAST-
LIVO2 processes visual and LiDAR data using direct methods, manages map points and
high-resolution image measurements through a unified voxel map, dynamically updates
reference image patches, and estimates exposure time in real time to improve system
robustness and accuracy.

R2LIVE [31] introduces a hybrid framework combining high-frequency ESIKF-based
odometry with low-frequency factor graph optimization to further improve overall accuracy
through factor graph optimization. Building upon this framework, R3LIVE [32] employs
a LiDAR–inertial subsystem to construct global geometric structures while utilizing the
visual–inertial subsystem to optimize state estimates through RGB photometric constraints,
enabling real-time generation of RGB point cloud maps. R3LIVE++ [33] further modifies
R3LIVE by utilizing a radiance map, optimizing the state based on the invariance of radi-
ance values, which further improves localization and mapping accuracy. LVIO-Fusion [34]
implements dynamic voxel mapping in its LIO subsystem and proposes a coarse-to-fine
hierarchical state estimation approach in the visual–inertial odometry (VIO) subsystem, as
well as using a factor-graph-based joint optimization of multi-sensor constraints.

However, existing LiDAR–visual fusion approaches do not fully consider the uncer-
tainty caused by noise in LiDAR measurements when constructing the point cloud map.
To address this, this paper explicitly parameterizes and models the measurement noise
of LiDAR points using a mergeable probabilistic voxel model and optimizes voxel map
management. Additionally, by jointly optimizing the measurements from IMU, LiDAR,
and cameras, the paper achieves a collaborative improvement in both localization accuracy
and system robustness.

3. Notation and System Overview
3.1. Notation

The state vector x ∈ R29 of the proposed method is defined as follows:

x =
[

GRT
I , GpT

I , GvT , bT
a , bT

g , GgT , GRT
C, GpT

C, I tC, fx, fy, cx, cy

]T
(1)

where ( GRI ,
GpI

)
represents the rotation matrix (unitless) and translation vector (unit: m)

from the IMU frame to the global frame, Gv is the IMU velocity (unit: m/s) in the global
frame,

(
ba, bg

)
are the IMU acceleration bias (unit: m/s2) and gyroscope bias (unit: rad/s),

and Gg is the gravity acceleration (unit: m/s2) in the global frame.
(GRC, GpC

)
denote the

rotation matrix and translation vector from the camera frame to the global frame, I tC is
the time offset (unit: s) between the camera and IMU, and ( fx, fy, cx, cy

)
are the intrinsic

parameters of the camera (unit: pixels).
Additionally, there are some special symbols in this paper: ⊟ and ⊞ represent “box-

plus” and “boxminus”, encapsulating manifold operations. ∑(·) is the covariance matrix
of the vector (·). x̂ is the prior estimate of the state vector. ⌊(·)⌋∧ represents the skew-
symmetric matrix of (·).

3.2. System Overview

Unlike feature-based LIVO systems, this paper does not directly extract feature points
in either the LIO subsystem or the VIO subsystem. The system framework is shown in
Figure 1. The LIO subsystem constructs a point cloud map using a mergeable probabilistic
voxel plane model, integrating LiDAR point clouds and IMU information to obtain a rough
estimate of the state vector. The VIO subsystem uses the prior information provided by
the LIO subsystem, first removing abnormal tracking points and then further refining the
estimation of the state vector.
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Figure 1. System framework. The orange, green, and blue modules correspond to the LiDAR, IMU,
and camera data processing pipelines, respectively; the gray module represents global map construc-
tion, while the light-blue module demonstrates the state vector update process based on ESIKF.

Specifically, in the LIO subsystem, IMU pre-integration is used to perform motion
compensation on the point cloud to remove motion distortion. The corrected point cloud is
then divided into fixed-size voxel grids, and probabilistic voxel planes are constructed by
modeling point cloud uncertainties. The state vector is coarsely estimated by minimizing
point-to-plane residuals. Hash tables and union-find sets are used to merge voxel planes
with coplanar relationships to update and build the voxel map. Finally, the LiDAR point
cloud identified as part of the voxel plane is added to the global map.

In the VIO subsystem, the state output from the LIO subsystem is used as the initial
value for the VIO subsystem. The depth information from point clouds in the LIO subsys-
tem is directly used as depth information for images in VIO. The global map is projected
onto the image frames to directly acquire tracking points, and then the Lucas–Kanade (LK)
optical flow method is employed to track these projected points. Additionally, a random
sample consensus algorithm based on a dynamic Bayesian network [36] is used to further
eliminate outliers. The state vector is further refined by minimizing both frame-to-frame
reprojection errors and frame-to-map RGB photometric errors, ultimately maintaining and
updating the global RGB map.

4. LiDAR–Inertial Odometry Subsystem
In the LIO subsystem, motion distortion correction is first applied to incoming LiDAR

frames using a backward propagation algorithm [17]. Subsequently, based on the error-
state iterative Kalman filter (ESIKF) framework, system state estimation is achieved by
constructing point-to-plane residual constraints based on 3DoF probabilistic planar models
in the voxel map (see Section 4.3). The 3DoF probabilistic plane model is detailed in
Section 4.1. For voxel map construction, the LIO subsystem projects each point of the point
cloud into the corresponding voxel and builds or updates the voxel map using union-find
sets and hash tables. During the voxel map update, it is considered that many small
coplanar voxel planes may be sub-planes under a larger parent plane. These sub-planes are
merged using the union-find set to re-estimate the parent plane parameters (see Section 4.2).
Finally, the LiDAR point cloud identified as part of the plane voxel is added to the global
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map, allowing the VIO subsystem to extract depth information for real-world 3D objects
from the LiDAR data.

4.1. 3DOF Probabilistic Plane Representation

Since the parameters of a plane are estimated using points on the plane, any noise in
the points will increase the uncertainty in the plane estimation. Traditional point cloud
map construction methods directly use raw sensor observation data and fail to effectively
quantify the impact of LiDAR point noise on the uncertainty of plane parameter estimation.
To address this, this paper considers two factors that contribute to the uncertainty of LiDAR
points in the voxel map: one originates from the raw point cloud measurement noise in
the local LiDAR coordinate system, which is relative to the local LiDAR frame; the other
arises from the LiDAR pose estimation error during the projection of the point cloud data
from the local coordinate system to the global world coordinate system. It is important
to note that the noise distribution of each point within the plane has a cumulative effect
on the accuracy of plane parameter estimation. Based on the above analysis, this paper
sequentially constructs uncertainty models for both points and planes.

4.1.1. Uncertainty of the Point

According to the analysis of LiDAR sensor measurement noise in [40], the uncer-
tainty of LiDAR points includes both distance uncertainty and orientation uncertainty, as
shown in Figure 2b. ωi represents the tangent plane where the LiDAR point resides, and
δωi ∼ N(02×1, Σωi ) represents the noise of the LiDAR point along the tangent plane.
di denotes the depth of the LiDAR point, and δdi

∼ N
(
0, Σdi

)
represents the range noise.

Therefore, the noise LPi of the LiDAR point δLPi
and its covariance ΣLPi

are calculated
as follows:

δLPi
= [ωi − di⌊ωi⌋∧N(ωi)]

[
δdi

δωi

]
(2)

ΣLPi
= Ai

[
Σdi

01×2

02×1 Σωi

]
AT

i (3)

where N(ωi) =
[
N1 N2

]
is the standard orthonormal basis at the tangent plane ωi, and

⌊ ⌋∧ denotes the skew-symmetric matrix. A detailed derivation of Equation (2) can be
found in [40]. By using the pose estimation results

(GRI ,
GpI

)
from IMU pre-integration,

the LiDAR point LPi is further projected into the world coordinate system, as shown in
Equation (4). Thus, the uncertainty of the LiDAR point WPi can be represented as shown in
Equation (5).

WPi =
GRI

LPi +
GpI (4)

ΣW Pi
= GRIΣLPi

GRI
T
+ GRI

⌊
LPi

⌋
∧

ΣGRI

⌊
LPi

⌋T∧GRI
T
+ ΣGpI

(5)

where ΣGRI
and ΣGpI

are the uncertainties of GRI and GRI at the tangent plane, with more
details available in [20]. The uncertainty of the point is the cornerstone of the plane’s
uncertainty, and the plane’s uncertainty is determined by the uncertainty of the points
within the plane.
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(a)  (b) 

Figure 2. (a) illustrates the representation of LiDAR points on a voxel plane, where i-Voxel represents
the i-th voxel. (b) depicts the uncertainty model for LiDAR points and the plane. The blue part
represents the LiDAR points and their parameters, while the red part represents the plane and
its parameters.

4.1.2. Uncertainty of a 3DoF Plane

For a plane composed of N LiDAR points WPi(i = 1, . . . , N), the uncertainty of each
point is represented by its covariance matrix ΣW Pi

. Based on the least squares princi-
ple, planar uncertainty can be computed via a dimensionality-reduced parameterization
method [41]. Specifically, the plane equation can be normalized along a principal axis. When
the z-axis is chosen as the principal axis, the normalized plane representation utilizes three
parameters, n = [a, b, d]T , to define the plane, rather than the six parameters comprising
the normal vector and the plane’s center point. This approach offers a three-degree-of-
freedom (3DoF) representation, reducing memory usage compared to the six-parameter
method. However, this representation becomes singular when the z-component of the
plane’s normal approaches zero. This issue can be addressed by projecting the point
cloud onto the coordinate axes. All points WPi on the plane satisfy Equation (6), from
which Equations (7) and (8) are derived. A closed-form solution for the plane parameters
n (Equation (9)) is obtained via least squares optimization, ultimately yielding the planar
uncertainty estimation model in Equation (10).

ax + by + z + d = 0 (6)
x1 y1 1
x2 y2 1
...

xn

...
yn

...
1

n =


−z1

−z2
...

−zn

 (7)

n =
A∗

|A|e (8)

where A∗ is the adjugate matrix of A, and A and e can be expressed as follows:

A =

∑ xixi ∑ xiyi ∑ xi

∑ xiyi ∑ yiyi ∑ yi

∑ xi ∑ yi N


e =

[
−∑ xizi −∑ yizi −∑ zi

]T

(9)

Σn =
N

∑
i

∂n
∂WPi

ΣW Pi

∂n
∂WPi

T
(10)
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Note that the elements recorded in A, A∗, and e are the summation results of all
points. Therefore, in Section 4.2 on voxel construction, the 3DoF plane representation can
be updated incrementally, effectively improving the efficiency of voxel map updates.

4.2. Voxel Map Construction and Updates

Dividing the voxel planes with completed probabilistic modeling into independent
units indeed enhances the system’s robustness. However, directly storing each independent
voxel, as the LiDAR point clouds are divided into fixed-size voxels (e.g., 0.5 × 0.5 × 0.5 m),
would lead to a significant increase in storage overhead, which is clearly impractical in
engineering applications. Moreover, existing methods do not fully account for the inherent
correlations between voxel planes. That is, when facing large planar scenes, it is important
to consider whether small voxel planes in the voxel map are coplanar. For example, in large
continuous planar scenes (e.g., walls), a single continuous plane is often segmented into
multiple sub-planes, which should inherently belong to the same parent plane. This means
that sub-planes P k with a coplanar relationship share a common larger parent plane P f .
The 3DoF estimation results of sub-plane P k can be treated as a covariance measurement
of the parent plane P f . To address this, this paper uses the union-find algorithm to merge
these sub-planes P k in order to obtain a more accurate 3DoF estimate of the parent plane P f .
This approach effectively saves memory usage and improves the accuracy of plane fitting.

4.2.1. Voxel Map Construction

This paper constructs voxel maps through a discrete spatial partitioning approach
based on voxelized grids. Specifically, raw LiDAR point clouds are discretized into fixed-
size voxel grids. A hash table enables rapid spatial indexing, while a union-find data struc-
ture maintains topological relationships between voxels, thereby constructing a dynamically
updatable voxel map. For the initial LiDAR frame, points are spatially mapped and filled
into the corresponding voxel units (see Figure 2a). For the filled voxels, the plane parame-
ters n = [a, b, d]T and their uncertainty Σn are computed based on Equations (8) and (10).
Through eigenvalue analysis, when the minimum eigenvalue of Σn satisfies λmin < τ (with
a threshold τ = 0.01), the voxel is deemed a valid plane voxel, and its geometric parameters
are retained for subsequent processing.

For subsequent LiDAR frame processing, newly acquired point clouds are dynamically
registered into the existing voxel map. Specifically, when it is detected that a voxel has
already been established at the corresponding location in the voxel map and the voxel has
not yet converged (defined as the number of points within the voxel being less than 50), the
system incorporates the current point cloud into the target voxel and incrementally updates
the plane parameters n and uncertainty covariance matrix Σn of the voxel. If a voxel has
not been established at the corresponding location, a new voxel is initialized, and the
plane parameters are calculated. To conserve system memory, the system sets a maximum
capacity limit of 50 points of cloud data for a single voxel. Once the voxel capacity is
saturated, updates to the voxel’s plane parameters are halted, and the voxel is marked
as a converged voxel (based on the conclusion in reference [20], the uncertainty of the
plane parameters converges when the number of points reaches 50). At the same time, the
voxel storage is cleared to release memory resources, effectively balancing computational
efficiency and storage requirements.

4.2.2. Voxel Merging and Updating

After probabilistic modeling of the voxels and constructing probabilistic voxel planes,
this paper considers the inherent spatial correlations between voxel planes and merges
those with coplanar relationships. Specifically, for a converged voxel plane Pn, the system
searches for other converged voxel planes P k

i (i = 1, . . . , n) that are coplanar with Pn and
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merges them. By introducing the Mahalanobis distance metric (as shown in Equation (11)),
the similarity between planes is quantified. When the computed result is below the critical
threshold determined by the χ2 distribution at the 95% confidence level, it is determined
that the geometric coplanar condition is satisfied. At this point, voxels Pn and P k

i are
merged to obtain MP k

i · f . This fusion mechanism effectively reduces the system’s memory
usage while maintaining the geometric consistency of the 3D reconstruction.

d =
(

nP k
i
− nPn

)(
ΣnP k

i
+ ΣnPn

)−1(
nP k

i
− nPn

)T
(11)

nMP k
i · f =

∥∥ΣnPn

∥∥
2nP k

i
+

∥∥∥ΣnP k
i

∥∥∥
2
nPn∥∥ΣnPn

∥∥
2 +

∥∥∥ΣnP k
i

∥∥∥
2

(12)

ΣnMPk
i · f

=

(∥∥ΣnPn

∥∥
2

)2
ΣnP k

i
+

(∥∥∥ΣnP k
i

∥∥∥
2

)2
ΣnPn(∥∥ΣnPn

∥∥
2 +

∥∥∥ΣnP k
i

∥∥∥
2

)2 (13)

where ∥ ∥2 denotes the Euclidean norm. For merged voxel planes MP k
i · f , Equations (12)

and (13) are used to obtain the corresponding plane’s covariance, ΣnMPk
i · f

, and the 3DoF

plane parameter representation, nMP k
i · f . These equations are based on a simple weighted

averaging algorithm with minimal trace. As shown in Figure 3, there are two typical
scenarios for plane merging. In Figure 3a, a simple merging case is illustrated, where the
number of points is small, and the parent plane of the current plane is directly set to the
parent plane of the neighboring plane. In Figure 3b, a more complex merging scenario is
shown. When the converged plane Pn and its adjacent converged plane P k

i are merged, the
parent plane of the current plane Pn· f is set to point to the parent plane of the neighboring
plane P k

i · f , and the merged plane undergoes pruning, ensuring that the union-find height
remains below 2.

(a) 

Figure 3. Cont.
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(b) 

Figure 3. Illustration of the scenarios of plane merging. (a) shows a simple case of plane merging.
(b) depicts a complex case of plane merging.

4.3. State Estimation Based on ESIKF

In the i-th point-to-plane matching, the observation equation for the LiDAR point-to-
plane distance is given as follows:

h(x̂k, ni) =
ΩT(GRI

LPi +
G pI

)
+ d

∥Ω∥ (14)

where Ω is the normalized normal vector of the plane MP k
i · f , represented as [a, b, 1]T .

Combining the prior state estimate x̂k and its covariance Σδx̂k obtained from the IMU state
propagation, the prior information is integrated with the point-to-plane distance matching
observation to construct the maximum a posteriori (MAP) model as shown in Equation
(15). This model consists of two components: the prior state term and the observation term.
The solution process is implemented based on an error-state iterative Kalman filter (ESIKF).

min
δx̌k

{
∥x̌k ⊟ x̂k + Jkδx̌k∥2

Σδx̂k
+

N

∑
i=1

∥h(x̌k, LPi) + Hh
i δx̌k∥2

∑li

}
(15)

where ∥x∥2
∑ = xT∑−1x represents the Mahalanobis distance with respect to the covariance

matrix ∑, x̌k denotes the posterior state estimate, and Jk denotes the Jacobian matrix that
projects state errors from the tangent space of the prior state estimate x̂k to the tangent
space of x̌k (detailed computation can be found in [17]). Hh

i is the Jacobian matrix of the
observation equation h, and ∑li is the observation noise covariance matrix. The calculation
methods for these are as follows:

Hh
i =

∂h
(
x̌k ⊞ δx̌k, LPi

)
∂δx̌k

(16)
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∑li = Jvi
ΣnMPk

i · f
,LPi

JT
vi

ΣnMPk
i · f

,LPi
=

ΣnMPk
i · f

03×3

03×3 ΣLPi


Jvi

=
[
Jni

, JLPi

]

Jni
= 1

∥Ω∥


xi

(
1 − 1

∥Ω∥2 hi(xi, 0)
)

yi

(
1 − 1

∥Ω∥2 hi(xi, 0)
)

1


JLPi

= 1
∥Ω∥ΩT × GRI

(17)

where ΣnMPk
i · f

is the observation error covariance of the converged plane, and ΣLPi
is the

observation error covariance of the point. The method for calculating the Kalman gain in
reference to [17] is as follows:

K =
(

HTR−1H + P−1
)−1

HTR−1 (18)

H =
[
Hh

1
T

, . . . , Hh
m

T]T
, R =diag

(
∑l1

, . . . , ∑lm

)
(19)

P =
(

Jk
)−1

Σδx̂k

(
Jk
)−T

(20)

The state vector x̌k can be updated by the following equation, where žk is the observa-
tion residual.

x̌k = x̌k ⊞
(
−Kžk − (I − KH)

(
Jk
)−1

(x̌k ⊟ x̂k) (21)

žk =
[

h
(

x̂k, LP1

)
, . . . , h

(
x̂k, LPm

)]T
(22)

The above state vector update process is carried out over multiple iterations and
terminates as soon as the change in the state falls below a predefined threshold or the
maximum number of iterations is reached. At that point, the system deems the current
state vector to be a reliable estimate and updates the prior state and its covariance matrix
according to the standard Kalman filter update equations. Finally, the refined state is used
as the new initial condition for IMU propagation in the LIO or VIO subsystem, ensuring
that subsequent optimizations start from the most accurate available estimate.

x̂k = x̌k, Σ̂δx̂k
= (I − KH)Σδx̂k (23)

5. Visual–Inertial Odometry Subsystem
In the visual–inertial odometry (VIO) system, an initial state estimate is obtained via

IMU pre-integration, and points from the global map are projected onto the current image
plane to establish spatial correspondences between map points and image pixels, with
pixel depth information provided by the LiDAR. Subsequently, the Lucas–Kanade (LK)
optical flow method is employed for real-time feature tracking across consecutive image
frames. To mitigate the impact of outliers on system accuracy, a random sample consensus
(RANSAC) algorithm based on a dynamic Bayesian network [36]—an enhanced variant of
the traditional RANSAC framework—is introduced to dynamically assess the reliability of
sampled data subsets through probabilistic modeling and reject erroneous feature points.
The system further refines state estimates by optimizing frame-to-frame reprojection errors
using the ESIKF. Additionally, RGB photometric constraints are constructed by extracting
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image color information, and multi-modal fusion optimization is achieved through joint
minimization of RGB color errors using the ESIKF framework, thereby enhancing both
localization precision and environmental representation consistency.

5.1. Outlier Rejection

Following LK optical flow tracking, a random sample consensus algorithm based
on a dynamic Bayesian network [36] is employed to eliminate outliers. Specifically, this
algorithm updates the inlier scores of individual data points during each iteration us-
ing the dynamic Bayesian network. Weighted sampling is conducted at each iteration
based on these updated scores, and the algorithm’s termination criteria are dynamically
adjusted according to the inlier and outlier probabilities of the data points. Compared
to traditional RANSAC methods, this approach offers enhanced computational precision
and reduced processing time. An overview of the algorithm is presented in Algorithm 1.

Algorithm 1: BANSAC algorithm outline

Input: Data Q and number of iterations K
Output: Best model θ* and C*
1. 𝑘 ⟵ 1. 
2. while  𝑘 ൏ 𝐾  do 
3.   𝑆௞ ⟵  weighted_samplingሺ𝑄,𝑃௞ିଵሻ 
4.   𝜃௞,𝑂௞ ⟵  hypothesisሺ𝑆௞ሻ 
5.   𝐶௞ ⟵ model_evaluatiomሺ𝑄,𝜃௞,𝑂௞ሻ 
6.   𝜃∗,𝑂∗,𝐶∗ ⟵  best_modelሺ𝜃௞,𝑂௞,𝐶௞ሻ 
7.   𝑃௞ ⟵  update_probabilitiesሺ𝜃௞,𝑂௞,𝐶௞ሻ 
8.   𝑂෨௞ ⟵  number_of൫𝑝௜

௞ ൏ 𝜏൯ 
9.   if   𝑂෨௞ ≧ 𝑂∗  do 
10.     break 

11.   endif 

12.   𝑘 ⟵ 𝑘 ൅ 1 
13. end while 

The algorithm takes as input a dataset Q = {x1, . . . , xN} and outputs a hypothesized
model θ* along with the classification C* of the data points in Q as inliers or outliers based on
the hypothesis model. In the k-th iteration, the inlier probabilities Pk−1 =

{
pK−1

1 , . . . , pK−1
N

}
obtained from the(k − 1)-th iteration are utilized as weights for weighted sampling, aiming
to derive a set S comprising points more likely to be inliers. In lines 4 to 6, the algorithm
obtains the hypothesis model θk, the number of outliers Ok, and the inlier classification
Ck. It then finds the current best hypothesis model θ* and inlier classification C*, along
with the minimum number of outliers O* that maximizes the number of inliers. In line 7,
the algorithm computes the inlier probabilities Pk =

{
pk

1, . . . , pk
n

}
for each data point in

the k-th iteration based on the Bayesian network model, with the computation details

available in [36]. Line 8 counts the number of outliers
∼
O

k
, defined as those points with

inlier probabilities pk
i below a specified threshold τ (with τ = 0.01). In line 9, the stopping

criterion is triggered when
∼
O

k
≧ O*, and the loop is exited. This indicates that the number

of outliers in the current model θk is greater than or equal to the minimal outlier count O*

corresponding to the best hypothetical model θ*, implying a significantly reduced likelihood
of obtaining fewer outliers through further iterations. The loop is thus terminated, and the
current optimal model hypothesis θ* and inlier classification C* are output.
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After tracking with the LK optical flow, we use the algorithm to compute the essential
matrix and solve the Perspective-n-Point (PnP) problem, aiming to mitigate the impact of
erroneous tracking points on the system’s state.

5.2. Frame-to-Frame Reprojection Error

In the previous frame Fk−1, assuming m map points M = {P1, . . . , Pm} were tracked,
with their projection coordinates in the previous frame being

{
ρ1k−1 , . . . , ρmk−1

}
, using the

LK optical flow method, the pixel coordinates of these map points in the current frame Fk

are abtained as
{

ρ1k , . . . , ρmk

}
. The reprojection error is defined as the Euclidean distance

between the projection coordinates from the previous frame and the current projections, as
illustrated by the geometric constraint in Figure 4. By formulating a nonlinear optimization
problem, the ESIKF algorithm is employed to minimize the reprojection errors, thereby
optimizing the system’s state.

For the s-th map point GPs =
[GpT

s , cT
s
]T

=
[

G psx, G psy, G psz, csr, csg, csb

]T
, GPs ∈ M,

where GpT
s represents the three-dimensional coordinates of the map point, we project this

map point into the camera coordinate system and obtain its reprojection error r
(
x̂k, ρsk , Gps

)
using Equation (19).

Cps =
[

C psx, C psy, C psz

]T
=

(
GR̂Ik

·IR̂Ck

)T
·Gps −

IR̂T
Ck
·I p̂Ck

−
(

GR̂Ik
·IR̂Ck

)T
·Gp̂Ik

(24)

r
(

x̂k, ρsk , Gps

)
= Ik

(
ρsk

)
− Ik

(
ζ
(

Cps, x̂k

))
(25)

ζ
(

Cps, x̂k

)
=

[
f̂xk

C psx
C psz

+ cxk , f̂yk

C psy
C psz

+ cyk

]T

+
I t̂ck

∆tk−1,k

(
ρsk − ρsk−1

)
(26)

where ζ represents a projection function, the latter term of Equation (20) is the time cor-
rection factor, ∆tk−1,k is the time interval between the previous frame Fk−1 and the current

frame Fk, and
(
cxk , cyk

)
and

(
f̂xk f̂yk

)
are the intrinsic parameters of the camera, specifi-

cally the principal point and focal length, respectively. During the optimization process
aimed at minimizing the reprojection errors, these intrinsic parameters are treated as vari-
ables to be optimized, adjusting them iteratively to enhance the accuracy of the system’s
state estimation.

Figure 4. Illustration of reprojection error.
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5.3. Frame-to-Map RGB Color Error

For the s-th map point GPs =
[GpT

s , cT
s
]T

=
[

G psx, G psy, G psZ, csr, csg, csb

]T
, GPs ∈ M,

the RGB color error model is established through the following steps: First, the map point
is projected onto the current image plane via a pinhole projection model to obtain its
corresponding pixel coordinates ρ. Subsequently, a linear interpolation algorithm is applied
to compute the RGB values of sampled points within the neighborhood of ρ, estimating the
projected point’s color descriptor γs (as illustrated in Figure 5). Finally, a RGB color error
function o

(
x̂k, Gps, cs ) is constructed between the map point’s color cs and the projected

point’s color γs. This error term is integrated into a nonlinear optimization framework,
where the ESIKF is employed to iteratively minimize the RGB color errors and refine the
system state.

o
(

x̂k, GPs, cs

)
= cs − γs (27)

Figure 5. Illustration of obtaining RGB information, with yellow squares indicating adjacent pixels.

5.4. State Estimation Based on ESIKF

Combining the prior state estimate x̂k and its covariance Σδx̂k , obtained from IMU
propagation with the frame-to-frame reprojection error and the frame-to-map RGB color
error, yields a maximum a posteriori (MAP) estimate for the state vector xk.

min
δx̌k


∥∥∥x̌k ⊟ x̂k + Jkδx̌k

∥∥∥2

Σδx̂k

+
N
∑

s=1

∥∥r
(
x̂k, ρsk , Gps

)
+ Hr

sδx̌k
∥∥2

∑αs

+
N
∑

s=1

∥∥o
(
x̂k, Gps, cs

)
+ Ho

s δx̌k
∥∥2

∑βs

 (28)

Here, Hr
s denotes the Jacobian matrix of the reprojection error, with corresponding

observation noise covariance ∑αs . Ho
s denotes the Jacobian matrix of the RGB color error,

with corresponding observation noise covariance ∑βs . The computation of these Jacobian
and covariance matrices is given below.

Hr
s =

∂r
(
x̌k ⊞ δx̌k, ρsk , Gps

)
∂δx̌k

(29)

∑αs
= ∑nρsk

+Jr
Gps

∑Gps
Jr

Gps

T , Jr
Gps

=
∂r
(
x̌k, ρsk , Gps

)
∂Gps

(30)

Ho
s =

∂o
(
x̌k ⊞ δx̌k, Gps, cs

)
∂δx̌k

(31)

∑βs
= ∑ncs

+∑nγs
+ Jo

Gps
∑Gps

Jo
Gps

T , Jo
Gps

=
∂o
(
x̌k, Gps, cs

)
∂Gps

(32)
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where ∑G ps
is the observation error covariance of the point, ∑nρsk

is the reprojection obser-
vation error covariance, and ∑ncs

and ∑nγs
are the RGB color observation error covariances

for the map point and the pixel point, respectively. The Kalman gain in Equation (18) is
further calculated using the following formula:

H =
[
Hr

1
T , . . . , Hr

m
T , Ho

1
T , . . . , Ho

m
T
]T

(33)

R = diag
(
Σα1 , . . . , Σαm ,Σβ1 , . . . , Σβm

)
(34)

P =
(

Jk
)−1

Σδx̂k

(
Jk
)−T

(35)

žk =
[
r
(

x̂k, ρ1k , Gp1

)
, . . . , r

(
x̂k, ρmk , Gpm

)
, o
(

x̂k, Gp1, c1

)
, . . . , o

(
x̂k, Gpm, c,

)]T
(36)

The system subsequently updates the state vector through Equation (21). When the
iterative process satisfies the convergence criteria, it performs the final state update using
Equation (23). Upon convergence, the state vector simultaneously performs the following
critical operations: (1) it updates global map points and tracking points, and (2) it serves
as the initial state for IMU propagation in either the LIO or VIO subsystem during the
next frame.

6. Map Management
(1) LiDAR Submap: In the LiDAR submap, raw point clouds are partitioned into fixed-

size voxel grids for processing. When the point cloud within a voxel forms a valid
planar feature, the system records the geometric parameters of the plane to support
subsequent point-to-plane matching and voxel merging operations. Voxel manage-
ment is implemented via a union-find data structure combined with a hash table for
efficient spatial indexing. To prevent computational overload, a maximum capacity
threshold of 50 point clouds per voxel is enforced. Once this storage limit is reached,
the voxel will stop updating and clear the internal point cloud data, retaining only
the calculated plane feature parameters.

(2) Global Map: For the global map point GPs =
[

G psx, G psy, G psz, csr, csg, csb

]T
, the global

map stores not only the position of the map point in the global coordinate system but
also the RGB information of the map point. After the system state is updated using
the ESIKF in the VIO system, a color fusion strategy based on Bayesian inference is
employed. This strategy probabilistically integrates the color observations obtained
via projection from the current image frame with the prior color stored in the map
points. The weighted update mechanism in this process significantly enhances the
accuracy of color estimation. Subsequently, based on the updated system state from
ESIKF, the projection operation of the map point to the current image plane is re-
executed, and the reprojection error and RGB color error in the current image frame
are calculated. If the error exceeds a set threshold, the tracked point is discarded
to ensure the accuracy of the system state and maintain the consistency of the map.
This approach not only enhances the system’s robustness under complex lighting
conditions but also reduces the impact of errors caused by incorrect tracking points
on system localization and mapping.

7. Experiments and Analysis
To validate the superiority of the proposed method, experiments were conducted

on a computer configured with a 12-core Intel® Core™ i5-10400F CPU @ 2.9 GHz, 32 GB
RAM, RTX 2080Ti, and Ubuntu 20.04. The experiments utilized the M2DGR [42] and
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NTU-VIRAL [43] datasets, comparing the proposed method’s localization performance
against several state-of-the-art algorithms, including FAST-LIO2, LIO-SAM, Voxelmap++,
LVI-SAM, FAST-LIVO, and R3Live. Localization accuracy was quantified using the absolute
trajectory error (ATE) [44] metric, computed with the open-source evaluation tool evo.
The ATE is defined as the Euclidean distance between the estimated and ground truth
trajectories after optimal alignment, providing a measure of the algorithm’s precision in
trajectory estimation.

ATE =

√√√√ 1
N

N

∑
i=1

∥∥∥ti
est − ti

gt

∥∥∥ (37)

where ti
est is the estimated pose and ti

gt is the ground truth pose. Since the proposed
method does not include a loop closure detection module, for the sake of experimental
fairness, the loop closure detection modules of LIO-SAM and LVI-SAM were disabled in
the subsequent experiments.

7.1. Experiments on the M2DGR Datasets

The M2DGR dataset was collected using a mobile robotic platform equipped with
multiple sensors, including the Velodyne VLP-32C LiDAR, Realsense d435i camera, and
Handsfree A9 IMU, facilitating data acquisition in complex indoor and outdoor environ-
ments. Ground truth trajectories were obtained using motion capture devices, a laser 3D
tracker, and an RTK receiver. As shown in Table 1, the proposed method achieved opti-
mal performance across most sequences, with an average absolute trajectory error (ATE)
root mean square error (RMSE) of 0.478 m. Notably, due to strict data synchronization
requirements, the FAST-LIVO algorithm encountered compatibility issues with the M2DGR
dataset, and thus, its results are not included in Table 1.

In indoor sequences such as door_, hall_, and room_*, the proposed method performed
exceptionally well, attributed to the abundant continuous planar structures in indoor
environments that provide strong geometric constraints for pose estimation. In LiDAR
point cloud processing, the probabilistic plane modeling approach discretizes raw data into
fixed-size voxel grids, causing large-scale continuous planes to be fragmented into multiple
small coplanar voxel planes. To enhance point cloud registration efficiency, a voxel plane
merging strategy was implemented to merge coplanar voxel planes (as shown in Figure 6).
The fused plane features offer effective geometric constraints for pose estimation in SLAM
systems and improve the matching efficiency between LiDAR point clouds and planes.

  
(a) (b) 

Figure 6. (a) The point cloud map corresponding to the gate_01 sequence. (b) The representation of
voxel planes in the gate_01 sequence. Each square represents a voxel plane, and voxel planes that are
coplanar share the same color.
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Table 1. RMSE of ATE in M2DGR datasets in meters.

Sequence Features Duration(s) FAST-LIO2 LIO-SAM Voxelmap++ LVI-SAM R3LIVE Our
Method

door_01
Outdoor to indoor

to outdoor,
long-term

461 0.407 0.246 0.244 0.245 0.247 0.187

door_02 Outdoor to indoor 127 0.28 0.184 0.194 0.185 0.274 0.177
gate_01 Dark, around gate 172 0.174 0.635 0.163 0.142 0.228 0.11
gate_02 Dark, loop back 327 0.32 0.341 0.526 0.346 0.38 0.335
gate_03 Day 283 0.112 0.106 0.148 0.104 0.104 0.083
hall_01 Random walk 351 0.284 0.236 0.27 0.241 0.258 0.213
hall_02 Random walk 128 0.513 0.278 0.251 0.273 0.372 0.204
hall_03 Random walk 164 0.573 0.466 0.282 0.324 0.352 0.196
hall_04 Random walk 181 1.045 0.914 0.892 0.849 0.938 0.725
hall_05 Random walk 402 1.18 1.011 0.999 1.03 1.03 0.793

room_01 Room, bright 72 0.312 0.159 0.134 0.135 0.203 0.079
room_02 Room, bright 75 0.315 0.126 0.12 0.127 0.199 0.088
room_03 Room, bright 128 0.413 0.162 0.161 0.152 0.201 0.16
street_02 Day, long-term 1227 3.096 3.564 fail 3.46 2.834 3.943

street_03 Night, back and
forth, full speed 354 0.177 0.508 fail 0.131 0.664 0.099

street_04 Night, around
lawn, loop back 858 0.464 0.832 fail 0.924 0.302 0.551

street_05 Night, straight line 469 0.299 0.337 3.255 0.337 0.385 0.317
street_06 Night, one turn 494 0.364 0.386 fail 0.379 0.368 0.342

Mean 348.5 0.574 0.583 1.628 0.521 0.519 0.478

Note: “fail” refers to cases where the absolute trajectory error exceeds 10. Bold font indicates the best performance.

In outdoor scenarios, the algorithm’s performance on the street_* sequences datasets
shows a declining trend. This is primarily due to the sparse distribution of map feature
points and a lack of continuous planar features. Notably, in extended sequences such as
street_02 and street_04, there is a significant degradation in performance. Analysis indicates
that the voxel plane merging operation leads to a cumulative error effect, which is the main
contributor to the decline in system accuracy. However, in shorter-duration sequences,
the proposed method demonstrates good adaptability. Comparative experiments with
Voxelmap++ show that the VIO subsystem effectively corrects cumulative errors from the
LIO subsystem, enhancing both positioning accuracy and robustness of the overall system.

Figure 7 illustrates the comparison between the estimated trajectory of the proposed
method and the ground truth trajectory in the gate_01 sequence. As demonstrated in
Figures 8 and 9, our method exhibits significant advantages in trajectory fitting accuracy
and localization error control compared to other algorithms, with the estimated trajectory
closely aligning with the ground truth. However, Figure 8b reveals transient abrupt de-
viations in the algorithm’s trajectory during intense rotational motion, followed by rapid
recovery. This occurs because excessively large rotational displacements hinder point
clouds from identifying sufficient voxel planes for registration within a short timeframe,
occasionally leading to erroneous merging of non-coplanar planes. Concurrently, motion
blur induced by high-speed movement degrades the VIO subsystem’s localization perfor-
mance. Nevertheless, such fluctuations remain temporary. Once motion stabilizes, the
LIO subsystem promptly corrects the pose by identifying voxel planes coplanar with the
current LiDAR point cloud in the radar submap. Overall, this phenomenon indicates
that the method maintains robust performance under aggressive motion, though further
optimization is warranted to address abrupt kinematic transitions.
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Figure 7. Trajectory estimation and its difference from the ground truth in the gate_01 sequence for
the proposed method.

Figure 8. Trajectory comparison in the gate_01 sequence. (a–c) show magnified views of the trajectory.

To further characterize the performance of the proposed method, we conducted de-
tailed comparisons of absolute trajectory error (ATE) variations across multiple algorithms
on low-light scene sequences gate_01 and street_03, with quantitative results illustrated in
Figures 10 and 11. Comparisons with existing mainstream algorithms demonstrate that the
proposed method maintains superior performance in most scenarios. It should be noted
that the Voxelmap++ algorithm failed to run properly on the street_03 sequence, so its
data are not included in Figure 11. Notably, Figure 10 shows that our method experiences
a sudden increase in trajectory error in certain sections of the gate_01 sequence, and an
analysis of the trajectory visualization in Figure 8b indicates that this anomaly is due to
violent rotational transformations present in the sequence. In contrast, the motion pattern
in the street_03 sequence is relatively stable, and as shown in Figure 11, the proposed
method maintains a consistently low error level throughout this sequence.
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Figure 9. Localization error in the gate_01 sequence.

Figure 10. Variation in absolute trajectory error for different algorithms in gate_01.

Figure 11. Variation in absolute trajectory error for different algorithms in the street_03 sequence.

7.2. Experiments on the NTU-VIRAL Datasets

The NTU-VIRAL dataset is a comprehensive collection designed for research in au-
tonomous aerial systems. It comprises data from multiple sensors, including two 3D
LiDARs, two synchronized global-shutter cameras, several inertial measurement units
(IMUs), and multiple ultra-wideband (UWB) ranging units, all mounted on a DJI Matrice
600 Hexacopter. Data were collected across various locations within Nanyang Technological
University (NTU), Singapore.
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As shown in Table 2, the method proposed in this study achieves optimal overall
performance, with an average root mean square error (RMSE) of 0.185 m for absolute
trajectory error (ATE). The experimental results indicate superior performance in the low-
light indoor sequences like ‘nya_*’, attributed to the abundant continuous planar structures
in confined spaces that provide strong geometric constraints for pose estimation. However,
in outdoor sequences such as ‘eee_*’ and ‘sbs_*’, the performance is comparatively poor.
This is primarily due to the scarcity of continuous planar features in open environments,
which limits effective constraints for pose estimation. Additionally, the NTU-VIRAL
dataset captures grayscale images of the surrounding environment, which limits the full
exploitation of the frame-to-map RGB color alignment module in VIO. Despite these
limitations, the proposed method still achieves a significant improvement in localization
accuracy compared to R3LIVE, which also utilizes an RGB color alignment module.

Table 2. RMSE of ATE in NTU-VIRAL datasets in meters.

Sequence Features Duration(S) FAST-
LIO2

LIO-
SAM Voxelmap++ FAST-

LIVO
LVI-

SAM R3LIVE Our
Method

eee_01 Outdoor, bright 398.7 0.222 0.193 0.198 0.27 0.179 0.219 0.147
eee_02 Outdoor, bright 321.1 0.158 0.117 0.216 0.162 0.216 0.736 0.175
eee_03 Outdoor, bright 181.4 0.2208 0.19 0.214 0.278 0.246 0.207 0.227
nya_01 Outdoor, square 396.3 0.245 0.205 0.433 0.276 0.204 0.302 0.153
nya_02 Outdoor, square 428.7 0.231 0.181 0.176 0.237 0.182 0.222 0.131
nya_03 Outdoor, square 411.2 0.254 0.263 0.988 0.257 0.153 0.1677 0.227
sbs_01 Indoor, low lighting 354.2 0.265 0.312 0.207 0.531 0.206 0.662 0.239
sbs_02 Indoor, low lighting 373.3 0.253 0.203 0.397 0.326 0.204 2.063 0.237
sbs_03 Indoor, low lighting 389.3 0.249 0.277 0.167 0.223 0.268 0.152 0.126
Mean 361.58 0.2331 0.212 0.333 0.284 0.206 0.5256 0.185

Note: Bold font indicates the best performance.

7.3. Visualization for Maps

The M2DGR system employs the mechanically rotating Velodyne VLP-32C LiDAR,
which uses 32 laser beams to achieve a 360◦ horizontal scan. As shown in Figure 6a, maps
built using this sensor alone cannot intuitively capture the rich detail of the surrounding
environment, nor can they fully demonstrate the performance of our mapping algorithm.
Moreover, the NTU-VIRAL dataset lacks RGB information and thus cannot adequately
reflect the quality of a global RGB map. To obtain both higher-density point cloud detail
and full-color mapping, this chapter instead uses the hku_campus_seq_02 sequence from
the R3LIVE dataset. This sequence is collected with a Livox Avia LiDAR—which offers
greater point cloud density to capture finer features—and an RGB camera, fully satisfying
the dual requirements of detailed geometry and color reconstruction. The LIO subsystem’s
mapping results on this sequence are presented in Figure 12.

Additionally, this paper conducts a comparative analysis between the proposed algo-
rithm and R3LIVE regarding RGB global map reconstruction on the hku_campus_seq_02
dataset (see Figure 13a,b). The results demonstrate that the RGB maps generated by our
algorithm exhibit slightly reduced detail clarity but overall superior performance compared
to R3LIVE.

To further evaluate the generalizability of our algorithm, we performed comparative
experiments on the NTU-VIRAL dataset’s eee_01 sequence, which utilizes only grayscale
images. Experimental findings reveal comparable mapping performance between the
two algorithms, with no significant performance disparity observed (see Figure 13c,d).
Comprehensive experimental results confirm that the proposed algorithm effectively con-
structs globally consistent mapping frameworks while maintaining real-time operational
capabilities and localization precision.
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Figure 12. Mapping result of the proposed algorithm’s LIO subsystem on the hku_campus_seq_02
sequence.

  
(a) Our method (b) R3LIVE 

  
(c) Our method (d) R3LIVE 

Figure 13. Comparison between the proposed method and R3LIVE in RGB global map construction.

7.4. Running Time Analysis

This study evaluates the real-time performance of FAST-LIVO, R3LIVE, and the pro-
posed method across all sequences in the NTU-VIRAL dataset. Experimental results are
presented in Table 3. The results demonstrate that the proposed method achieves supe-
rior real-time performance with an average computational time consumption of 39.19 ms.
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Benefiting from the 3DoF incremental voxel mapping with sub-plane merging and O(1)
time complexity enabled by hash-table-based queries, the LIO subsystem of our method
achieves optimal processing efficiency, requiring only 20.39 ms per frame on average.

Table 3. Average time consumption on the NTU-VIRAL datasets.

Sequence
FAST-LIVO R3LIVE Our Method

LIO VIO LIO VIO LIO VIO

eee_01 24.41 8.74 26.23 29.73 20.4 15.26
eee_02 25.12 9.14 27.34 30.01 20.14 15.28
eee_03 24.22 8.63 25.51 29.68 18.33 13.95
nya_01 23.85 8.92 28.68 31.35 19.85 14.7
nya_02 24.08 9.33 29.31 31.94 21.08 15.22
nya_03 24.57 8.96 29.22 31.27 20.21 15.53
sbs_01 23.69 9.98 28.02 29.31 18.76 16.74
sbs_02 23.39 9.34 28.64 29.57 18.39 15.59
sbs_03 23.21 9.47 28.92 29.42 19.03 16.36
Mean 24.06 9.17 27.99 30.25 20.39 15.8

Total 33.23 58.24 36.19
Note: Bold font indicates the best performance.

In contrast, both FAST-LIVO and R3LIVE employ incremental KD-Tree structures
for map management in their LIO subsystems. This approach incurs an O(NlogN) time
complexity for voxel map updates, where N denotes the number of point clouds, primarily
due to nearest-neighbor searches and dynamic balancing operations of tree structures.
The proposed method eliminates complex neighbor search operations through union-find
structures and hash tables for point cloud map management. While maintaining localiza-
tion accuracy, this innovation reduces time complexity to O(N), significantly enhancing
computational efficiency in the LIO subsystem.

For image frames of size 752 × 480 in the dataset, the VIO subsystem of the pro-
posed method demonstrates improved computational speed compared to R3LIVE. This
enhancement stems from two key optimizations: (1) replacement of conventional RANSAC
with a computationally efficient dynamic-Bayesian-network-based RANSAC method, and
(2) strict inclusion of LiDAR points from LIO-identified planar voxels into the global map.
However, the VIO subsystem of the proposed method exhibits slower computation than
FAST-LIVO’s VIO module, as our method requires additional computations for frame-to-
map RGB error minimization and global map maintenance. Consistent with R3LIVE, our
method updates the global RGB map during each iteration with O(m) time complexity
(where m represents the number of map points), resulting in relatively higher computa-
tional overhead.

8. Conclusions
This paper proposes a multi-sensor fusion framework that efficiently couples LiDAR,

IMU, and camera data through mergeable probabilistic voxel mapping. In the LIO subsys-
tem, after removing motion distortion from LiDAR point clouds using IMU pre-integration,
the uncertainty of map points caused by noise in the LiDAR data is modeled probabilisti-
cally using voxel maps to construct voxel planes. Furthermore, the 6DoF plane parameters
are optimized to 3DoF plane parameters to enhance computational efficiency. Additionally,
the union-find data structure and hash table are employed to merge sub-planes that share
coplanar relationships within the same parent plane. Experimental results show that this
approach effectively accelerates the point-to-plane matching speed. In the VIO subsys-
tem, the state estimation from the LIO subsystem is used as an initial guess, with IMU
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pre-integration providing a rough estimate of the system state. The global map is projected
onto image frames to directly acquire tracking points. The random sample consensus
algorithm based on a dynamic Bayesian network is then employed to eliminate outlier
tracking points. The system state is further refined by minimizing both frame-to-frame
reprojection errors and frame-to-map RGB color errors, while simultaneously estimating
and optimizing the camera intrinsic parameters online. Experiments on the public datasets
M2DGR and NTU-VIRAL demonstrate that the proposed method achieves effective results
in both localization accuracy and time consumption. However, the accumulation of errors
due to voxel plane merging, which was not effectively corrected, leads to suboptimal
performance on long sequences.

In future work, improvements should be pursued in the following aspects. First,
the planar merging method employed in this study neglects the heterogeneity between
individual voxel planes, potentially leading to erroneous merging of non-coplanar sur-
faces. Subsequent research should explore superior plane fusion strategies to mitigate
cumulative errors. Specifically, an adaptive weighting mechanism could be introduced to
assign varying confidence levels based on planar observation uncertainties and geometric
characteristics, thereby enhancing merging decision accuracy.

Second, the proposed method exhibits significant robustness degradation under ag-
gressive rotational motions. This limitation could be addressed by analyzing voxel variation
patterns to optimize algorithmic adaptability. Implementing an inertial measurement unit
(IMU)-based motion prediction model could alleviate this issue through dynamic adjust-
ment of point cloud registration parameters using rotational rate information, thereby
enhancing system stability in complex motion scenarios.

Finally, while the current model accounts for LiDAR measurement noise and visual
errors induced by camera intrinsic parameter variations, future efforts should integrate
direct measurement noise factors such as camera exposure duration. This necessitates
developing a more comprehensive sensor noise model that incorporates exposure incon-
sistency, illumination variations, and motion blur into an error compensation framework,
ultimately improving measurement precision and consistency in challenging environments.
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